在用户方面,已经形成了一个基于 ML 的质量控制和过程监测/优化的解决方案集群。一个完全自动化和控制器集成的质量控制系统,它可以基于如电机电流、转速和跟随误差等现有的机器数据对生产的货物进行全检测。它可以 7 天 24 小时工作不休息,不会感到疲倦,而且能够实现远远超过人类所能做到的周期时间。过程监测和优化是两个连续的步骤。如果用训练好的模型来进行过程监测,机器可以通知其操作员,而操作员又可以即时调整过程,以保持产品质量的稳定性。下一步是向这名有经验的机器操作员学习,并以这样的方式训练模型,让模型能够自主地进行所需的参数调整,或在中间步骤中作为“智能助手”发挥作用,给出参数设置建议。
除了控制系统中用于 ML 的基础组件外,我们越来越关注倍福产品在图像处理和运动控制领域的应用,目标是为用户提供硬件和软件方面经过优化的组件,无需事先掌握 ML 知识即可使用这些组件。
实时机器学习尤其是对需要高处理性能同时快速运行各种工艺过程的工厂车间提出了挑战。然而,如何将 ML 用于实时控制的应用,如运动控制应用?
Fabian Bause 博士:首先,我们必须认识到,训练基于 ML 的模型要比执行(即推理)训练好的模型花费更多的时间。在硬件方面,推理在我们的工业 PC 上运行。它能够在 CPU 中高效执行的一个重要原因是持续使用 SIMD 命令扩展,并结合高度优化的缓存管理。此外,目前 CPU 中的处理器内核越来越多地支持神经网络的加速执行,因为它们可以非常高效地并行执行。仔细观察训练好的模型也非常重要,它就像“手工编写”的源代码一样。执行一个庞大、低效的源代码要比执行一个精简、优化的源代码需要的时间长很多。必须根据特定的任务对训练好的 ML 模型进行调整和优化。现在,可以非常轻松地实现微秒级神经网络执行速度。例如我们有一个展览就是由 250 个神经元组成的多层感知神经网络。通过我们高度优化的推理引擎,它在 Intel Core i3 CPU 上的执行时间仅需几微秒。因此,我们可以确信,在图像处理和运动应用中使用 ML 时,在算力方面不会有任何障碍。