(3) 显示断点中每一步的步序号、执行时间、设定时间、剩余时间等;当前步序号必须保证每个子步都不一样,当步序号变化时给当前步运行时间清零后开始计时、而当子步序处于暂停时,剩余时间是不计时的。
2.2.3 设备逻辑程序
第三层为各断点子步进行时产生的指令,即产生送至各个设备的功能组命令。其作用为:
(1)选择设备的手动或自动模式;
(2)根据每个断点子步序的触发条件去动作设备;
(3)互为备用的设备启动组,若选择的设备组启动失败时,需自动切换至启动备用设备组有提示运行人员。
在具体的逻辑设计时,采用了模块化,结构化的组态方式,每个步序逻辑均采用了相同的逻辑结构,以保证程序的可读性和准确性。这样做一方面更为清晰有效地实现了控制策略;另一方面也便于调试和修改,不至于出现一处逻辑修改而引起多处连锁反应的情况,提高了系统安全性。
3. APS报警设计
在系统运行期间,DCS 系统通过操作画面与操作员进行信息互动,但为了对系统进行更有效地监控,就需要对出现事故报警的被控对象进行快速检索、判别和确认事故类别,因此我们在进行APS报警设计时需要考虑如下方面:
(1)系统设备的故障状态,例如设备跳闸、阀门故障、指令拒绝等信息必须在操作画面实时反映,以便给操作员进行监控。
(2)对报警进行分系统显示,一旦出现报警,可以准确地对报警进行定位。
(3)系统运行过程中,特别是机组发生故障的时候,过程报警是海量信息。为帮助操作员正确把握主要故障原因,报警应分等级分别报出。
(4)各种过程报警信息通过适当的途径完整体现,使操作员掌握全面的信息,例如可以采用报警光子牌的形式。
(5)系统运行过程中,报警形式可根据需要采用声音、彩色灯光、颜色等多种手段。
4. 界面设计
我们在进行APS界面设计的原则是:主操作界面需要简洁,表现出系统的运行情况即可,子界面需给出系统中各个断点及断点包含的功能组、设备的运行情况。APS的操作界面如下图所示。
下面分别介绍每个按钮及显示框的详细意思:
1) 条件满足:当执行到某个断点时,若条件满足,绿色显示;若条件不满足,红色显示。点击按钮可查看当前断点的每个条件允许与否。
2) 操作提示:点击按钮通过弹出画面可对系统投运断点、设备主备关系进行选择。
3) APS投入:当APS投入时,所有断点都将被选择。
4) 自动模式:分自动和手动模式,当APS投入时,系统进入自动模式。APS解除时,可以选择手动和自动模式,并且可以通过右键进入子图,选择哪些断点投入。
5) 系统流程:点击进入详细子图,如下图所示。
左侧为整个系统所需执行的步骤,黄色闪烁框表示当前正在执行的断点程序。可点击流程框,例如“调用#1A吸收塔启动功能组”,在右边弹出启动功能组的详细状况,其中显示此功能组所涉及设备的运行状态、运行时间等。
6) 报警光子牌:当系统中有未确认报警时,红色/黄色闪烁;有报警但已确认时平光红色;无报警时为灰色。点击可进入详细报警信息画面。
7) 当前主步序:这里显示APS执行情况的进度显示,以及当前执行中的断点描述。
8) 当前子步序:执行断点中子功能组的步序描述以及当前步的执行时间。
9) 当前步剩余时间:根据当前步执行所需的设定时间计算出当前步的剩余时间。
10)操作按钮:系统启动、停止、确认、暂停、复位按钮,通过这些按钮完成APS的所有操作。当完成一个断点时,操作按钮将被下图所替换。点“继续”按钮,程序将自己进入下一个断点;点“暂停”按钮,程序将停留在当前断点且下方的剩余时间不再累计,当“暂停”取消时,再继续计时,当剩余时间小于或等于0秒时,自动进入下一断点;点“复位”按钮,APS程序将中止。
5. 总结
本项目在NT6000系统硬件平台实现了660MW机组脱硫控制系统的APS功能。整个系统在逻辑设计时采用模块化组态,结构清晰明了,画面和报警设计尽可能的满足了运行人员的监控方式,提供了大量的操作指导和提示信息,方便了运行人员的操作。从功能设计而言,包括了从系统投运初期到完成烟气脱硫的全过程,运行人员还可根据实际情况进行不同的操作。
由于设备自身的可控性和可用率不能满足自动化要求,以及一些工艺和技术上仍存在问题,国内APS系统的投用成功率还不高。随着本系统的成功投运,进一步减少了人为干预,提高了机组的自动化水平,也给同类型机组的脱硫控制系统提供了很好地借鉴作用。
参考文献
【1】项雷、过泉生、张岩、忻铁祥《机组自启停系统在宝钢电厂350MW机组上的应用》,发电设备,2005 No.5
【2】谢健育《700MW机组自启停系统(APS)设计特点及应用》,内蒙古电力技术,2001年第19卷第2期
【3】余振华《机组自启停系统应用策略与调试》,广西电力,2007年第五期