3 £®¸ßƵÏßȦµç¸ÐÖµµÄ²âÁ¿
a £®½«±»²âÏßȦ½ÓÔÚ “ Lx ” ½ÓÏßÖùÉÏ£¬½Ó´¥ÒªÁ¼ºÃ£»
b £®¸ù¾ÝÏßȦ´óÔ¼µç¸ÐÖµ£¬°´ËùÐèѡһ¸öºÏÊÊµÄÆµÂÊÒÔ±£Ö¤ÄÜгÕñ£»
c £®ÈçÒªµÃµ½ÕæÊµµç¸ÐÊý (L T ) £¬±ØÐëÏȲâµÃµç¸Ð·Ö²¼µçÈÝÁ¿ C 0 £¬Èç·Ö²¼µçÈݽÏСµÄ»°£¬ÔÚµ÷µ½Ð³Õñµãºó£¬¼ÇÏÂÖ÷µ÷µçÈÝ C 1 £¬È»ºóÔÙ½«Ö÷µ÷µçÈÝÁ¿µ÷ÔÚ “ C 1 +C 0 ” ÖµÉÏ£¬ÕâʱÏÔʾÆÁL¾ÍÊÇËùÇóÕæÊµµç¸Ð¶ÁÊý£¬Ò²¿É°´ÒÔϹ«Ê½¼ÆËãÇóµÃ£º
f ±»²âµç¸ÐСÓÚ 1 μ H ʱ£¬°´ÉÏ·¨²âµÃµç¸ÐÖµ»¹Ó¦¼õÈ¥ÒÇÆ÷ÖвâÊÔ»ØÂ·±¾ÉíÊ£Óàµç¸Ð“ L 0 ” (QBG-3D L 0 =26nH) ¡£
5 £®µçÈÝÆ÷ÈÝÁ¿µÄ²âÁ¿ A. ÔÚ²âÁ¿·¶Î§ÄÚµÄСÓÚÖ÷µ÷µçÈÝÁ¿µÄµçÈÝÆ÷µÄ²âÁ¿
a £®Ñ¡Ò»¸öÊʵ±µÄгÕñµç¸Ð½Óµ½“ Lx ” µÄÁ½¶Ë£»
b £®½«µ÷гµçÈÝÆ÷µ÷µ½×î´óÖµ¸½½ü£¬ÁîÕâ¸öµçÈÝÊÇ C 1 £¬Èçδ֪µçÈÝÊÇСÊýÖµµÄ£¬ C 1 Ó¦µ÷µ½½ÏСµçÈÝÖµ¸½½ü£¬ÒÔ±ã´ïµ½¾¡¿ÉÄܸߵķֱæÂÊ£»
c £®µ÷ÐźÅÔ´µÄƵÂÊ£¬Ê¹²âÊÔ»ØÂ·Ð³Õñ£¬ÁîгÕñÆ÷ Q µÄ¶ÁÊýΪ Q 1 £»
d £®½«±»²âµçÈݽÓÔÚ“ Cx ” Á½¶Ë£¬µ÷½Úµ÷гµçÈÝÆ÷£¬Ê¹²âÊÔµç·ÔÙгÕñ£¬Áîеĵ÷гµçÈÝֵΪ C 2 ºÍָʾ Q ֵΪ Q 2 ¡£
±»²âµçÈݵÄÓÐЧµçÈÝΪ Cx = C 1 £ C 2
µçÈÝÆ÷ËðºÄ½ÇÕýÇÐΪ
µçÈÝÆ÷µÄÓÐЧ²¢Áªµç×èΪ
C 0 Ϊ»ØÂ·Ð³Õñµç¸ÐµÄ×ÔÉíµçÈÝ¡£ B £®´óÓÚµ÷гµçÈÝÁ¿µÄµçÈÝÆ÷ÓÿÉÌæ´ú·¨²âÁ¿
a. ȡһֻÊʵ±ÈÝÁ¿µÄ±ê×¼µçÈÝÁ¿£¬ÆäÈÝÁ¿Îª C 3 £¬½«Ëü½ÓÔÚ“ Cx ” ½ÓÏßÖùÉÏ¡£
b £®°´ 5A £¯ a-c ¸÷²âÊÔ²½Ö裻
c £®È¡Ï±ê×¼µçÈÝÆ÷£¬½«±»²âµçÈݽӵ½ “ Cx ” ½ÓÏßÖù£¬µ÷½Úµ÷гµçÈÝÆ÷µ½Ð³Õñ£¬´ËʱÖ÷µ÷µçÈÝÁ¿¶ÁÊýΪ C 2 £¬Ôò Cx ¿ÉÓÉÏÂʽµÃµ½£º
Cx = C 3 + C 1 £ C 2
6 £® Q ºÏ¸ñÔ¤Öù¦ÄÜʹÓÃ
Q ºÏ¸ñÔ¤Öù¦ÄÜÌØ±ðÊÊÓÃÓÚ¹¤³§Ðè´óÅúÁ¿²âÊÔijͬ¹æ¸ñÔª¼þµÄ Q ֵʱ£¬µ±¸ÃÔª¼þ Q Öµ³¬¹ýijһ¸ø¶¨Öµ¼´ÎªºÏ¸ñ£¬ÕâʱҺ¾§ÏÔʾÆÁÏÔʾ“ OK ” £¬ÒÇÆ÷Í¬Ê±ÎØ½ÐÌáÐÑ£¬ÕâÑù¿É¼õÇṤÈËÊÓÁ¦Æ£ÀÍ£¬Í¬Ê±´ó´ó¼Ó¿ìÁ˲âÊÔËÙ¶È¡£
Q ºÏ¸ñÔ¤ÖõIJ½Ö裺
a £®Ñ¡ÔñÒªÇóµÄ²âÊÔÆµÂÊ£»
b £®ÓÃÒ»Ö»ºÏ¸ñÔª¼þ»òÒ»Ö»¸¨ÖúÏßȦµ÷г²âÊÔ»ØÂ·£¬Ê¹ Q Öµ¶ÁÊýָʾÔÚËùÐèÔ¤Öà Q ֵλÖÃÉÏ£»
c £®°´Ò»Ï Q ÖµºÏ¸ñ±È½Ï°´¼ü£¬Ê¹ÏÔʾÆÁµÚÈýÐÐÓÒ±ßÏÔʾ“ COMP OK »ò NO ”£¬Í¬Ê±ÒÇÆ÷·¢³öÎØ½ÐÉù£¬´Ëʱ¸Ã¹¦ÄÜÉèÖþͽáÊøÁË£»
d £®»»ÉÏÒª²âÊÔµÄÆ÷¼þ£¬Î¢µ÷гÕñµçÈÝÖÁгÕñµã£¬Èç¹û¸ÃÆ÷¼þµÄ Q Öµ´óÓÚÉ趨µÄ Q Öµ£¬ Q ºÏ¸ñָʾ“ OK ” £¬Í¬Ê±ÒÇÆ÷·¢³öÎØ½Ð¡£ÈçÐèÈ¡ÏûÒÑÉèÖõĺϸñÖµ£¬Ö»ÒªÔÙ°´Ò»ÏÂÉèÖüü¼´¿É¡£