3.2 A/D转换与单片机系统 由于测试量程要达100毫欧、分辨率要小于0.1毫欧,所以A/D转换器的二进制编码数至少要达到1000个,相当于10位的A/D转换器。考虑到噪声的影响以及A/D转换器的差分非线性DNL、积分非线性NL和量化误差LSB,选择16位的串行接口A/D转换器ADS7809。设定其输入量程为10V,则分辨率为0.1525mV。当被测量的电阻最大值为100毫欧,恒流源电流为1A时,被测电阻上的压降为0.1V。为提高测试的精度,将此信号放大100倍达到10V,则理论上0.1毫欧的电阻可产生10mV的电压降,A/D转换后的读数可达65LSB,可充分保证测量的精度。

图3 精密扩展恒流源电路
4 关键误差的消除
4.1 硬件滤波电路 由于机体是一个大的导体,其感应的干扰信号很强,机上设备工作时也会产生较大的干扰。而机体电阻是一个比较稳定的值,在恒流源的激励下产生的电压信号是比较稳定的信号,理论上近似如直流。因此在将测量信号加到A/D转换器之前先经过一个有源低通滤波器,设定较低的截止频率可滤除一切交流干扰。
4.2 软件滤波
为进一步提高系统抗干扰和噪声的能力,保证测试的精度,对获得的测量值进行数字滤波处理,即进行256次测量后取平均值。经过软、硬件滤波处理后的系统误差仅仅±1LSB。
4.3 测试连接线及其与机上测试点随机接触电阻的消除
恒流源电流流经的系统内部线路电阻和连接飞机的测试导线的导线电阻可达三十几毫欧,可作为系统常数误差予以消除。 难以消除的误差是随机误差,来自于测试线路与机上连接点的随机接触电阻。每次测量时,拧紧测试线的力度不同、接触表面的清洁度不同,其接触电阻完全是随机的,变化范围可达几个毫欧。为此采用如图4所示的测试连接电路予以消除。

图4 消除随机误差的测试连接图
测试原理是四线测试法。选择L1~L4四根导线为相同导线电阻的镀银导线。M1、M2为机上测试连接点。在同一个测试点上拧紧两根测试线,L1和L2,L3和L4。导线的另一端接至测试接线盒的接触电阻小于0.05毫欧的φ6镀金接线柱。采用手动连接活动镀金接线片的办法,构成三种测试状态:R+接T1、R—接N1,测量出L1、L2及接触点M1的接触电阻;R+接N2、R—接T2,测量出L3、L4及接触点M2的接触电阻。将这两个电阻值取平均值作为测试线路的系统误差。最后测出R+接N2、R—接N1的电阻值,减去上述测得的测试线路系统误差,即得到机体电阻值。
|