目录:
一、气体传感器的概述
二、气体传感器的特性
三、如何选择气体传感器
1. 根据测量对象和测量环境
2. 灵敏度的选择
3. 响应特性(反应时间)线性范围
四、气体传感器的分类
1. 半导体式气体传感器
2. 固体电解质式气体传感器
3. 接触燃烧式气体传感器
4. 电化学式气体传感器
5. 光学气体式气体传感器
6. 高分子式气体传感器
7. 集成复合式气体传感器
五、气体传感器类别课题重点分析
a. 电化学式气体传感器
1)恒电位电解式传感器 2) 原电池式气体传感器
b. 光化学式气体传感器
1)直接吸收式 2) 光反应 3) 气体光学特性的新传感器
六、气体传感器的应用与发展方向
a、应用科学 b、发展方向
一、气体传感器的概述:
气体传感器是一种将气体的成份、浓度等信息转换成可以被人员、仪器仪表、计算机等利用的信息的装置!气体传感器一般被归为化学传感器的一类,尽管这种归类不一定科学。 “气体传感器”包括:半导体气体传感器、电化学气体传感器、催化燃烧式气体传感器、热导式气体传感器、红外线气体传感器等。
二、气体传感器的特性:
1 主要特性
1.1 稳定性 稳定性是指传感器在整个工作时间内基本响应的稳定性,取决于零点漂移和区间漂移。 零点漂移是指在没有目标气体时,整个工作时间内传感器输出响应的变化。区间漂移是指传感器连续置于目标气体中的输出响应变化,表现为传感器输出信号在工作时间内的降低。理想情况下,一个传感器在连续工作条件下,每年零点漂移小于10% .
1.2 灵敏度 灵敏度是指传感器输出变化量与被测输入变化量之比,主要依赖于传感器结构所使用的技术。大多数气体传感器的设计原理都采用生物化学、电化学、物理和光学。首先要考虑的是选择一种敏感技术,它对目标气体的阀限制(TLV-thresh-old limit value)或最低爆炸限(LEL-lower explosive limit)的百分比的检测要有足够的灵敏性 .
1.3 选择性 选择性也被称为交叉灵敏度。可以通过测量由某一种浓度的干扰气体所产生的传感器响应来确定这个响应等价于一定浓度的目标气体所产生的传感器响应。这种特性在追踪多种气体的应用中是非常重要的,因为交叉灵敏度会降低测量的重复性和可靠性,理想传感器应具有高灵敏度和高选择性.
1.4 抗腐蚀性 抗腐蚀性是指传感器暴露于高体积分数目标气体中的能力在气体大量泄漏时,探头应能够承受期望气体体积分数10~20倍,在返回正常工作条件下,传感器漂移和零点校正值应尽可能小。气体传感器的基本特征,即灵敏度、选择性以及稳定性等,主要通过材料的选择来确定选择适当的材料和开发新材料,使气体传感器的敏感特性达到最优。
三、如何选择气体传感器
根据测量对象与测量环境确定传感器的类型。 要进行—个具体的测量工作,首先要考虑采用何种原理的传感器,这需要分析多方面的因素之后才能确定。因为,即使是测量同一物理量,也有多种原理的传感器可供选用,哪一种原理的传感器更为合适,则需要根据被测量的特点和传感器的使用条件考虑以下一些具体问题:量程的大小;被测位置对传感器体积的要求;测量方式为接触式还是非接触式;信号的引出方法,有线或是非接触测量;传感器的来源,国产还是进口,价格能否承受,还是自行研制。在考虑上述问题之后就能确定选用何种类型的传感器,然后再考虑传感器的具体性能指标。
通常,在传感器的线性范围内,希望传感器的灵敏度越高越好。因为只有灵敏度高时,与被测量变化对应的输出信号的值才比较大,有利于信号处理。但要注意的是,传感器的灵敏度高,与被测量无关的外界噪声也容易混入,也会被放大系统放大,影响测量精度。因此,要求传感器本身应具有较高的信噪比,尽量减少从外界引入的于扰信号。传感器的灵敏度是有方向性的。当被测量是单向量,而且对其方向性要求较高,则应选择其它方向灵敏度小的传感器;如果被测量是多维向量,则要求传感器的交叉灵敏度越小越好。
传感器的频率响应特性决定了被测量的频率范围,必须在允许频率范围内保持不失真的测量条件,实际上传感器的响应总有—定延迟,希望延迟时间越短越好。传感器的频率响应高,可测的信号频率范围就宽,而由于受到结构特性的影响,机械系统的惯性较大,因有频率低的传感器可测信号的频率较低。在动态测量中,应根据信号的特点 (稳态、瞬态、随机等)响应特性,以免产生过火的误差。
传感器的线形范围是指输出与输入成正比的范围。以理论上讲,在此范围内,灵敏度保持定值。传感器的线性范围越宽,则其量程越大,并且能保证一定的测量精度。在选择传感器时,当传感器的种类确定以后首先要看其量程是否满足要求。但实际上,任何传感器都不能保证绝对的线性,其线性度也是相对的。当所要求测量精度比较低时,在一定的范围内,可将非线性误差较小的传感器近似看作线性的,这会给测量带来极大的方便。
四、气体传感器的分类:
1. 半导体式气体传感器
2. 固体电解质式气体传感器
3. 接触燃烧式气体传感器
4. 电化学式气体传感器
5. 光学气体式气体传感器
6. 高分子式气体传感器
7. 集成复合式气体传感器
五、气体传感器类别课题重点分析:
a、电化学式气体传感器
1)恒电位电解式传感器:
是将被测气体在特定电场下电离,由流经的电解电流测出气体浓度,这种传感器灵敏度高,改变电位可选择的检洌气体,对毒性气体检测有重要作用。
2)原电池式气体传感器:
在KOH电解质溶液中,pt —Pb或Ag —Pb 电极构成电池,已成功用于检测O2,其灵敏度高,缺点是透水逸散吸潮,电极易中毒。
b、光学气体传感嚣
1)直接吸收式气体传感器:
红外线气体传感器是典型的吸收式光学气体传感器,是根据气体分别具有各自固有的光谱吸收谱检测气体成分,非分散红外吸收光谱对SO2、CO、C O2、NO等气体具有较高的灵敏度。 另外紫外吸收、非分散紫外线吸收、相关分光、二次导数、自调制光吸收法对NO、N O2 SO2、C H( CH4) 等气体具有较高的灵敏度。
2)光反应气体传感器 :
光反应气体传感器是利用气体反应产生色变引起光强度吸收等光学特性改变,传感元件是理想的,但是气体光感变化受到限制,传感器的自由度小。
3)气体光学特性的新传感器:
光导纤维温度传感器为这种类型,在光纤顶端涂敷触媒与气体反应、发热。温度改变,导致光纤温度改变。利用光纤测温已达到实用化程度,检测气体也是成功的。 此外,利用其它物理量变化测量气体成分的传感器在不断开发,如声表面波传感器检测SO2、N O2、H2S、NH3、H2 等气体也有较高的灵敏度。
六、气体传感器的应用与发展方向:
a、应用学科:
机械工程(一级学科);传感器(二级学科);气体及湿度传感器(三级学科)如:一氧化碳传感器广泛使用在矿山,汽车,家庭等空气质量安全检测的地方等。
b、发展方向:
主要措施是在传统的半导体气敏材料SnO,SnO2,Fe2O3中掺杂一些元素,其次是研制和开发复合型和混合型半导体气敏材料和高分子气敏材料,使这些材料对不同气体具有高灵敏度、高选择性、高稳定性。
应用新材料、新工艺和新技术,对气体传感器的机理做进一步研究,使传感器更加微型化和多功能化,并具有性能稳定、使用方便、价格低廉等特点。
进一步采用计算机技术实现气体传感器的智能化。气体传感器和计算机技术相结合,出现智能气体传感器——电子鼻。国内外已成功开发鉴别和检测食品、香料等的电子鼻。研制开发新型仿生气体传感器-仿生电子鼻是未来气体传感器发展的主要方向。
|