首页 新闻 工控搜 论坛 厂商论坛 产品 方案 厂商 人才 文摘 下载 展览
中华工控网首页
  P L C | 变频器与传动 | 传感器 | 现场检测仪表 | 工控软件 | 人机界面 | 运动控制
  D C S | 工业以太网 | 现场总线 | 显示调节仪表 | 数据采集 | 数传测控 | 工业安全
  电 源 | 嵌入式系统 | PC based | 机柜箱体壳体 | 低压电器 | 机器视觉
模糊自适应PID控制在空气球实验系统中的应用
收藏本文     查看收藏
  刘洪玮  石红瑞
(东华大学 信息学院 ,上海 201620)
摘要:针对具有非线性和多扰动的空气球控制系统以及对快速定位的要求,本文采用了模糊自适应PID控制算法对空气球控制。建立了空气球对象的模型,在AR4MATLAB/Simulink环境下进行控制器设计,并下载到B&R公司的可编程计算机控制器(PCC)上,实现对空气球的控制。实验结果表明,该控制方案实现简单,可方便实现模糊控制在空气球实验系统中的应用。
关键词:空气球实验系统;模糊自适应PID控制;贝加莱 PCC;AR4MATLAB/Simulink
中图法分类号:TP273.4                        文献标识码:A  
Application of Fuzzy Adaptive PID Control on Air Ball Experiment System
Liu Hong-wei,Shi Hong-rui
(College of Information Science and Technology, Donghua University, Shanghai, 201620)
Abstract: For the nonlinear and multi- disturbance of the air ball movement system, and rapid positioning requirements, Self-adaptive fuzzy PID algorithm was adopted to control the air ball. The module of air ball was built and controller was designed in AR4MATLAB/Simulink, then the controller was downloaded to the PCC of B&R to control the air ball. The experimental results showed that the method is easily realized and it is convenient to apply fuzzy control to air ball experiment system.
Key words: Air ball experiment system; Fuzzy Self-adaptive PID control; B&R PC(Programming Computer Controller); AR4MATLAB/Simulink

0.  引言
在运动控制系统设计中,PID控制以其结构简单、使用方便、鲁棒性较强等特点长期以来被广泛应用于工业过程中,并取得了良好的控制效果。但是对于一些非线性时变系统,采用PID控制难以获得满意得控制效果[1]。而模糊控制是一种基于语言规则与模糊推理的智能控制,它不依赖被控对象精确的数学模型,是在总结经验基础上实现自动控制的一种手段。由于模糊控制对输入变量的处理是离散的,且没有积分环节,故控制精度不如PID控制。本文将模糊控制与PID控制相结合,利用模糊判断的思想,对PID参数自动整定。使用贝加莱公司新推出的AR4MATLAB/Simulink中的B&R工具箱进行控制器设计并应用到空气球实验系统中。

1.  实验硬件系统构成
本文采用的空气球实验装置由贝加莱公司提供,该系统由控制器、风扇、玻璃管、空气球组成,如图1所示,具体如下:
1)控制器:采用贝加莱公司的X20CP1486标准型CPU,它是基于Intel Celeron的处理器,任务处理等级是μs级。配有64MB的大容量内存,方便模糊控制等复杂控制运算;
2)风扇:采用标准PC风扇,输出功率可变,大小由输入电压控制,采用PWM技术进行控制;
3)玻璃管:两端开口透明管,直径比空气球略大,以保证空气球可以在其中自由运行,长度约为45cm;
4)空气球:采用标准乒乓球,直径40mm,重量2.7g。

图1 空气球实验装置硬件图

2.  实验软件介绍
软件使用的是贝加莱公司提供AR4MATLAB ,它增加了自动代码转化功能,即在AR4MATLAB/Simulink中搭建的模块可以通过使用Real-Time Workshop® 和 Real-Time Workshop® Embedded Coder自动转换成ANSI-C语言,并下装到B&R 的PCC中,示意图如图2所示。

图2 控制算法实现示意图

这就使得基于AR4MATLAB/Simulink设计的复杂控制算法可以容易的下载到控制器中,使用者不需要调试.AR4MATLAB/SIMULINK新增了一个B&R Toolbox,该工具箱里包含了4个不同的模块,如图3所示。
 

图3 B&R工具箱

3. 
空气球实验装置模型的建立
3.1系统参数
空气球实验系统是一个典型的力学系统,其模型参数及空气阻力参数见表1、表2:
表1 模型参数                         表2 空气阻力参数

 

  
3.2运动学分析
根据牛顿第二定律:F=ma 和空气阻力计算公式: (方向与空气球运动方向相反):
1) 空气球向上运动时,受力情况如图4所示。
此时,推力F(t) =mg+ma+f,即:
F(t) =0.0265+0.0027a+0.000074732v2                   (1)
2) 空气球向下运动时,受力情况如图5所示。
 

                   

                    
 图4 小球向上运动             图5 小球向下运动
此时,推力F(t) =mg+ma-f,即:
F(t) =0.0265+0.0027a-0.000074732v2                     (2)
系统通过PWM(脉冲宽度调制)来控制加在风扇上的电压,从而控制风扇吹力的大小。风扇电压与吹力是非线性关系,可采用非线性处理模块Lookup table将其分段线性化。

由于空气球运动时的最高速度不超过0.1m/s2,根据计算,空气阻力f相对于推力F、重力mg,相差5个数量级,所以可以忽略空气阻力。
 
4.  模糊自适应PID控制器设计
PID控制只能利用一组固定参数进行控制,这些参数不能兼顾动态性能和静态性能之间、设定值和抑制扰动之间的矛盾。为此,控制系统引入模糊推理,在PID初值基础上通过增加修正参数进行整定,改善系统动态性能[2][3]
4.1参数自整定原则
PID参数模糊自整定是找出PID的三个参数与 和 之间的模糊关系,在运行中通过不断检测 和 ,根据模糊控制规则来对三个参数进行在线修改,以满足不同 和 时对控制参数的不同要求,而使被控对象具有良好的动静态性能,模糊PID控制系统如图6所示。
 

图6模糊控制系统原理图

模糊控制器以偏差 和偏差变化率 作为输入,修正参数△kp,△ki,△kd为输出,则PID控制器输出的参数为kp, ki, kd为(3)所示,kp,ki,kd为预整定值。
kp= kp+△kp
ki = ki+△ki
kd= kd+△kd                               (3)
4.2模糊控制规则表
模糊控制器输入输出变量的模糊子集分别为E,EC,△kp,△ki,△kd,各变量语言值为:{负大,负中,负小,零,正小,正中,正大},记为{ NB,NM,NS,ZO,PS,PM,PB},隶属函数均采用灵敏度强的三角函数,模糊蕴涵关系运算采用最小运算法(Mamdani),去模糊化采用重心法。E和EC的变化范围为[-0.5,+0.5],模糊论域为{-6,-5,-4,-3,-2,-1,0,1,2,3,4,5,6}。△kp,△ki和△kd的基本论域为[-0.3,0.3],模糊论域为{-0.3,-0.25,-0.2,-0.15,-0.1,-0.05,0,0.05,0.1,0.15,0.2,0.25,0.3},比例因子Ke为12,量化因子Kec为 1。通过模糊推理及试验修正,得出△kp,△ki,△kd的模糊控制规则如表3-5所示。
表3 △kp的模糊规则                               表4 △ki的模糊规则
 
      
表5 △kd的模糊规则


5. 
实验结果
根据所建立的空气球实验装置数学模型,在AR4MATLAB/ Simulink环境下,使用模糊PID控制算法进行仿真实验,空气球在玻璃管中的高度为被控参数,设定值为0.3m,模糊PID控制器初始参数kp=60, ki=0.5, kd=100。在Automation Studio中对控制器进行编译,生成ANSI-C代码并下载到贝加莱公司的PCC中,对空气求进行控制。使用Trace评分功能对空气球运动轨迹进行追踪,如图7所示。



图7


6. 
结束语
本文使用贝加莱公司新推出的B&R Toolbox ,在AR4MATLAB/Simulink环境下进行模糊自适应PID控制器设计,并下载到贝加莱公司的可编程计算机控制器(PCC)上,实现对空气球的控制。实验结果表明,该控制方案实现简单,可方便实现模糊PID控制在空气球实验系统中的应用。
 
参考文献
[1] 党建武,赵庶旭,王阳萍. 模糊控制技术[M].中国铁道出版社, 2007,8.
[2] Xie W F,et al.Fuzzy Adaptive Internal Model Control.IEEE Tran.on Industrial Electronics.2000,47(1):193~202.
[3] Kevin M. Passino, Stephen Yurkovieh. Fuzzy control. Beijing: Tsinghua University Press,2001.

 

状 态: 离线

公司简介
产品目录
供应信息

公司名称: 贝加莱工业自动化(上海)有限公司
联 系 人: 销售部
电  话: 021-54644800
传  真: 021-33675666
地  址: 上海市田林路487号宝石园21号楼
邮  编: 200233
主  页:
 
该厂商相关解决方案:
贝加莱控制系统在污水处理中的典型应用
PCC 控制技术在炼油厂污水处理装置上的应用
ARPOL DCS系统在供水系统中的应用
B&R PCC 及ACOPOS 伺服在刻蚀线上的应用
PCC 控制技术在炼油厂污水处理装置上的应用
APROL DCS系统在电力行业的应用
贝加莱产品与技术在国能生物电厂远程监控系统中的应用
PCC - 可编程计算机控制器在锅炉自动控制中的应用
PCC 在黑河象山水电厂励磁装置技改中的应用
PCC 技术在发电厂监控中的应用
PCC 在变电站自动化中的应用
一种新型控制技术——PCC 在水电站中的应用
更多方案...
立即发送询问信息在线联系该解决方案厂商:
用户名: 密码: 免费注册为中华工控网会员
请留下您的有效联系方式,以方便我们及时与您联络

关于我们 | 联系我们 | 广告服务 | 本站动态 | 友情链接 | 法律声明 | 不良信息举报
工控网客服热线:0755-86369299
版权所有 中华工控网 Copyright©2022 Gkong.com, All Rights Reserved