首页 新闻 工控搜 大讲坛 论坛 厂商论坛 产品 方案 厂商 人才 文摘 下载 展览
中华工控网首页
  P L C | 变频器与传动 | 传感器 | 现场检测仪表 | 工控软件 | 人机界面 | 运动控制
  D C S | 工业以太网 | 现场总线 | 显示调节仪表 | 数据采集 | 数传测控 | 工业安全
  电 源 | 嵌入式系统 | PC based | 机柜箱体壳体 | 低压电器 | 机器视觉
怎么利用GPU进行深度学习
收藏本文     查看收藏

    当你使用GPU进行深度学习时,你会一次又一次惊奇地发现,你的速度提高了多少。与CPU相比,20倍的速度提升是很常见的,但是在更大的处理问题上,你甚至可以达到50倍的速度提升。使用GPU,您可以比平常更快地尝试新的想法、算法和实验,并且几乎可以立即得到关于哪些可行哪些不可行的反馈结果。如果你是认真的,一定要有一个深度学习。那么怎么挑选合适的GPU去深度学习呢?下面一起来看看。
    当一个人开始进行深度学习时,拥有一个快速的GPU是一个非常重要的,因为这种在实践经验中的快速收获是建立在专业技能的基础之上的,你会在将深度学习应用中遇到许多的新问题,如果没有这种快速的反馈,从错误中吸取教训就会花费太多的时间。有了GPU,就可以很快的学会如何将深度学习应用得更好。
    使用模型并行性,能够组成更大的神经网络,它有近30亿个连接。但要利用好这些联系,只需要更大的数据集。另一方面,多GPU的一个优点是可以在每个GPU上分别运行多个算法或实验。虽然没有获得加速,但可以通过同时使用不同的算法或参数获得更多关于性能的信息。如果你的主要目标是尽快获得深度学习经验,这是非常有用的,而且对于想同时尝试多个新算法版本的研究人员也是非常有用的。
    如果只是偶尔使用深度学习,或者使用非常小的数据集(小于10-15GB)和重要的密集神经网络,那么多个GPU可能不适合。
    如果想自己编写类似的网络,请注意,要编写高效的多GPU网络是一项艰巨的任务,这将比在一个GPU上编写一个简单的网络要花费更多的时间。
    因此,总的来说,一个GPU应该足以完成几乎所有任务,而额外的GPU只能在非常特定的情况下传递好处(许多GPU用于非常、非常大的数据集)。


 

状 态: 离线

公司简介
产品目录
供应信息

公司名称: 杭州东田科技有限公司
联 系 人: 李女士
电  话: 0571-56599916
传  真: 0571-81604831-806
地  址: 杭州市余杭区仓前街道龙潭路7号未来研创园A座320
邮  编: 310013
主  页:
 
该厂商相关解决方案:
无人驾驶|车载工控机解决方案
东田工控|网络安全解决方案
东田工控|智能车载解决方案
东田工控:挑选工业平板电脑时经常会考虑的几个因素
更多方案...
立即发送询问信息在线联系该解决方案厂商:
用户名: 密码: 免费注册为中华工控网会员
请留下您的有效联系方式,以方便我们及时与您联络

关于我们 | 联系我们 | 广告服务 | 本站动态 | 友情链接 | 法律声明 | 不良信息举报
工控网客服热线:0755-86369299
版权所有 中华工控网 Copyright©2009 Gkong.com, All Rights Reserved