首页 新闻 工控搜 论坛 厂商论坛 产品 方案 厂商 人才 文摘 下载 展览
中华工控网首页
  P L C | 变频器与传动 | 传感器 | 现场检测仪表 | 工控软件 | 人机界面 | 运动控制
  D C S | 工业以太网 | 现场总线 | 显示调节仪表 | 数据采集 | 数传测控 | 工业安全
  电 源 | 嵌入式系统 | PC based | 机柜箱体壳体 | 低压电器 | 机器视觉
机器视觉,玩转自动驾驶
北京盈美智科技发展有限公司
收藏本文     查看收藏

机器视觉技术发展至今已有二十多年的历史,而真正发生革命性进步的则是莫尔视觉计算理论的提出,通过实现神经网络相关算法使机器拥有同人类视觉系统同样的功能提供了可能。一般来说,机器视觉系统包含有镜头、摄像系统和图像处理系统,而其核心则是专用高速图像处理单元,也就是把存入的大量数字化信息与模板库信息进行比较处理,并快速得出结论,其运算速度和准确率是关键指标。这主要通过高效合理的算法和处理能力强大的芯片来实现。

目前,市场上已有多种高效视觉专用硬件处理器及芯片等电子器件,并且随着计算机技术的进步,更先进的算法被相继发明,如采用网格分布式处理系统能够有效的提高运算的效率。今后机器视觉的核心问题将是对图像的深入理解。

机器视觉在自动驾驶中的应用主要有以下两个个方面:

道路检测

自动导航是自动驾驶的必要条件,自动驾驶过程中,道路检测主要是为了确定车辆在道路中的位置和方向,以便控制车辆按照正确的路线行驶。另外,它还为后续的障碍物检测确定搜索范围,以及缩小障碍物检测的搜索空间,降低算法复杂度和误识率。然而由于现实中的道路多种多样,在加上光照、气候等各种环境因素的影响,道路检测是一个十分复杂的问题。至今仍无一个通用的算法,现有算法基本上都对道路做了一定的假设。通常采用的假设有:1特定兴趣区域假设;2道路等宽假设;3道路平坦假设。另外,道路平坦假设也为障碍物定义提供参考。

障碍物检测

障碍物检测的准确率是车辆自动驾驶过程中安全性的重要保证。在行驶过程中,障碍物的出现是不可预知的,也就无法根据现有的电子地图避开障碍物,只能在车辆行驶过程中及时发现,并加以处理。当前,由于自动驾驶环境的不成熟,关于障碍物的定义尚没有统一的标准。因此,可以认为一切可能妨碍车辆正常行驶的物体和影响车辆通行的异常地形都是车辆行驶过程中的障碍物。目前来看,障碍物检测算法主要有以下三种:1.基于特征的障碍物检测;2.基于光流场的障碍物检测;3.基于立体视觉的障碍物检测。在三种算法中,基于立体视觉的障碍物检测因为既不需要障碍物的先验知识,对障碍物是否运动也无限制,还能直接得到障碍物的实际位置而成为主流研究方向。但其对摄像机标定要求较高。而在车辆行驶过程中,摄像机定标参数会发生漂移,需要对摄像机进行动态标定。

目前,机器视觉技术在自动驾驶中并没有进行大规模的应用,其实这这并非是硬件的问题,事实上摄像头技术在汽车中的应用已经十分成熟,如善领科技的行车记录仪,广角视野、倒车影像等功能都完全具备,而芯片技术也已能够高效完成图像的压缩处理,最终难点在于模拟神经网络的视觉算法。

更多机器视觉知识请关注北京盈美智科技发展有限公司网站。网址:www.cnimage.com。联系方式:18901085836。


 

状 态: 离线

会员简介

会员代号: saerdi
联 系 人: 宋文娟
电  话: 010-82895362
传  真:
地  址: 北京市海淀区上地信息路1号国际科技创业园1—1705
邮  编: 100000
主  页:
 
该厂商相关技术文摘:
电子快门的方式——全局快门和卷帘式快门
视觉传感器助力机器视觉发展
工业相机增益与曝光
机器视觉系统LED光源的主要类型及其适用领域
哪些因素影响LED光源的寿命?
机器智能视觉之IC引脚外观检测系统
机器视觉将与彩色视觉系统进一步融合
浅谈图像增强技术的行业应用
自动化技术创新推动电梯步入智能化时代
机器视觉图像处理软件可有效提升产品划痕检测
线扫描相机系统的设计解析
模拟采集卡和数字采集卡之区别
更多文摘...
立即发送询问信息在线联系该技术文摘厂商:
用户名: 密码: 免费注册为中华工控网会员
请留下您的有效联系方式,以方便我们及时与您联络

关于我们 | 联系我们 | 广告服务 | 本站动态 | 友情链接 | 法律声明 | 不良信息举报
工控网客服热线:0755-86369299
版权所有 中华工控网 Copyright©2022 Gkong.com, All Rights Reserved