1 热熔胶特性分析
乙烯一醋酸乙烯共聚物(EVA)是喷胶系统普遍使用的一种热熔胶,它是一种不需溶剂,不含水分的固态可熔性聚合物。EVA在常温下为固体,当加热到一定温度时转变为具有一定粘度的流动液体,该液体喷涂在物体表面,并经压合可在短时间内完成粘结固化。它的主要构成成分为EVA树脂、增粘剂和粘度调节剂。作为主成分的EVA树脂直接决定着热熔胶的性能,如粘结强度、熔化温度、抗拉强度以及耐温变形性能等。增粘剂一般采用聚合松香或萜烯,它的加入主要是防止温度下降时,EVA树脂的粘结力及对被粘物体表面渗透力的降低。为了在熔融温度、胶体流动性、浸润性,以及凝固速度之间取得最佳的结合点,常采用微晶石蜡或石蜡作为粘度调节剂。热熔胶的温度与物理状态特性如图1所示。
图1中:80~135℃为软化区域,当加热至80℃时,胶体开始软化并熔动;135~200℃为熔化区域,此时胶体热熔成可流动的液体,通过对该液体施加5×104~1×105Pa的压力,可控制胶体喷射到被粘物体表面的胶体长度。在整个喷胶控制过程中,加热温度不可超过200℃,否则胶体有燃烧的危险。EVA热熔胶的冷却固化通常是在室温下完成的,较理想的温度以15~26℃为宜,湿度应保持在50%左右。
2 PLC控制喷胶系统设计
文中的点喷胶控制系统应用于纸箱的粘合,要求能够在一个纸箱的三个受胶面上(两个侧面和一个顶面)实现准确的连续喷胶和间断喷胶,PLC控制系统的I/O分配如表1所示。系统所需要使用的输入点包括激活喷胶的输入点、机器已经准备运行的输入点、加热和压缩空气已足够的输入点以及检测门被打开和急停被按下的检测输入点。系统所需要使用的输出点包括控制顶喷胶和侧喷胶气阀开关用的输出点、控制顶喷胶马达离合器的接合或分离的输出点、在机器运行中加热降温或压缩空气的气压不足需要停机的输出点和在机器运行中门被意外打开或急停被按下需要停机的输出点。
2.2 系统软件设计
2.3 精度控制的补偿算法
电磁阀是一种具有较大延时的执行元件,它的开启和关闭均需要经历一定的时间,虽然这个时间只有毫秒级,且当喷胶头移动速度较低时,由于电磁阀延时打开或关闭造成的误差较小。考虑到生产效率的因素,提高喷胶头移动速度成为必然,但由此造成的误差也明显增大。为了尽可能减小此误差所造成的影响,在分析喷胶头移动速度、喷胶压力及电磁阀闭合特性相互关系的基础上,建立一个误差修正补偿的数学模型,即提供一个与相关影响因素有关的超前、滞后修正量,以补偿由于电磁阀延迟所导致的位置及长度误差。由于无法直接抽象出各参数之间的函数关系,因此采用高次多项式逼近法,构造相应的补偿曲线如式(1)所示,利用最小二乘法进行多项式的拟合求解。
令:x表示喷胶头移动的速度;y表示相应的补偿量,则选取m个实验数据(xi,yi),其中i=1,2,…,n。通过最小二乘法构造如式(2)所示的关系矩阵,求解关于a0,a1,…,am的线性方程组,可得x,y之间的近似函数关系。
令:ωi=1,即取{1,x,…,xm)为基函数的代数多项式进行拟合。考虑到精度与速度平衡统一,经实验验证分析选取m=2,n=4,利用克莱姆(Cramer)算法求解出系数a),a1,即可得补偿曲线方程式:
y=φ(x)=a0+a1x (3)
对多个喷胶控制头分别计算误差补偿曲线方程式,即可实现多个喷胶头同时多工位的粘箱加工控制。
3 系统调试
PLC控制系统的调试分软、硬件两部分进行。硬件调试主要检查电控元件是否正常可靠工作,线路连接是否正确,抗干扰措施是否合理。软件调试先分模块再系统总体调试,逐步分析程序运行是否符合控制要求,消除异常情况的发生。经在某纸箱粘箱生产线上的实际运行表明,PLC控制喷胶系统达到了实际生产的要求,系统可靠性高,易扩展,维护方便,抗干扰能力强。
纸箱封箱的热熔胶喷射粘结工艺有着严格的顺序控制要求,应用PLC对喷胶过程进行控制,可最大程度地消除传统继电器接触器控制系统的缺点。通过对影响喷胶速度和精度相关因素的研究,利用误差补偿模型的分析结果进行实时控制调整,使喷胶控制系统能够对多种规格类型的纸箱进行多方位、多形式、高准确度的喷胶加工,表现出良好的灵活性和可靠性。在对被控对象合理分析的基础上并兼顾成本要求,该系统还具备良好的拓展性;在对系统软硬件进行适宜调整的情况下,该系统可以适用于新的加工形式和控制对象。
|