首页 新闻 工控搜 论坛 厂商论坛 产品 方案 厂商 人才 文摘 下载 展览
中华工控网首页
  P L C | 变频器与传动 | 传感器 | 现场检测仪表 | 工控软件 | 人机界面 | 运动控制
  D C S | 工业以太网 | 现场总线 | 显示调节仪表 | 数据采集 | 数传测控 | 工业安全
  电 源 | 嵌入式系统 | PC based | 机柜箱体壳体 | 低压电器 | 机器视觉
锂离子电池电解液的安全性研究进展
武汉天立华高电气设备有限公司
收藏本文     查看收藏

摘要:本文综述了锂离子电池材料的安全性能方面研究进展。从电解液的燃烧性能和电池电极材料的热稳定性两个角度,分别介绍了无闪点溶剂和阻燃电解液方面的研究状况,以及电极材料与电解液之间和电解液自身的热稳定性的影响因素和改善其热稳定性的措施。

  Progress of Studies on Flame Suppression of Lithium-ion Batteries

  XIANG Hong-fa, CHEN Chun-hua, WANG Zheng-zhou

  通过对氟代醚溶剂的研究发现[4,5]:甲基氟代丁基醚(CF3CF2CF2OCH3,MFE)和碳酸甲乙酯(EMC)混合溶剂的闪点随着MFE的含量增加而升高,而在乙基全氟代丁基醚(EFE)和EMC混合溶剂体系中,闪点却随着EFE含量增加而降低。在MFE+EMC(4:1 vol)混合溶剂中加入1M LiN(SO2C2F5)2 (LiBETI)得到的无闪点的电解液,与1M LiPF6/EC+EMC电解液相比,该电解液对LiCoO2正极的充放电容量无不良影响,但会使石墨负极的充放电容量下降较多。在上述电解液中加入0.1M LiPF6和0.5M EC,室温下石墨/LiCoO2全电池具有较好的循环性能,560次循环后,放电容量可保持在初始容量的80%以上。

  2.2 阻燃电解液的研究

  阻燃电解液是一种功能电解液,这类电解液的阻燃功能通常是通过在常规电解液中加入阻燃添加剂获得的。

  Wang等[6,7]以磷酸三甲酯(TMP)作为阻燃剂,研究了含TMP电解液的燃烧性能和电化学稳定性,发现TMP本身有很好的阻燃效果和氧化稳定性,但是在石墨负极的还原稳定性较差。他们发现加入共溶剂可以抑制TMP的还原分解,例如,在EC+PC+TMP(TMP<10%)和EC+碳酸二乙酯(DEC)+TMP(TMP<25%)三元体系中TMP都具有较好的还原稳定性,但随着共溶剂含量的增加,电解液的燃烧性会增加,以无定型炭代替石墨作为负极,可以提高TMP的还原稳定性。Ota[8]在1M LiPF6/EC+DEC+TMP(6:2:2)体系中添加5%的乙烯基乙基磷酸酯(EEP)后,有效地抑制了TMP的分解,这是因为EEP有利于石墨负极表面固体电解质界面(SEI)膜的形成。Yao[9]研究了亚磷酸三甲基酯(TMPI)和磷酸三甲酯(TMP)对电解液的阻燃作用和电化学性能的影响,实验发现对于等量的TMPI和TMP,前者在提高电解液的阻燃性同时,还能改善正极半电池的电化学性能,作者认为这是由于TMPI对正极表面的稳定效应所致;而后者的阻燃效果虽然较好,但后者对电解液的阻燃作用是以损失一定的电化学性能为代价的,正极半电池的放电容量损失较严重。

  Hyung[10]分别使用磷酸三苯酯(TPP)和磷酸三丁酯(TBP)作为阻燃剂时发现,即使加入1%(wt)的TPP也有明显的阻燃效果,燃烧传播速率显著降低;添加5%TPP能明显提高电解液的热稳定性能,并显示出较好的电化学性能,而含TBP的电解液的循环性能较差。Wang[11]使用4-异丙基苯基二苯基磷酸酯(IPPP)作为阻燃剂用于1M LiPF6/EC+DEC(1:1 wt)体系,发现其阻燃效果较好。对于IPPP的阻燃机理,作者认为是气相自由基机理和凝聚相成炭机理共同起作用。

  负极材料中的粘结剂在电池温度升高时与LixC发生剧烈放热反应,这个反应一般发生在240~350℃,放热量在1500J/g左右[31]。Biensan[32]和Maleki[33]研究发现,LixC和粘结剂的反应发生在250℃以上,放热量与粘结剂的种类及含量有关。放热量随着粘结剂含量的增加而增加,而且随着嵌锂程度的增加而增加。不同粘结剂的放热量不同,PVDF的放热量几乎是无氟粘结剂的2倍。Roth[28]通过DSC的研究表明,粘结剂的含量与放热量没有直接联系,粘结剂用量对体系放热的影响是间接的,它通过影响嵌锂碳的有效表面积来起作用。Yang[34]认为在DSC谱图中283℃的放热峰与PVDF无关,而是由于石墨结构的剥落引起的。

  3.2 正极与电解液之间的放热反应研究

  通常正极材料在充电状态下很不稳定,容易分解并放出氧气,放出的氧气与电解液发生反应并产生热量,从而导致电池的温度升高,引起更多的反应发生导致热失控。Wang[35]研究发现,电解液与Li0.5CoO2共存体系的热稳定性比电解液和Li0.5CoO2各自的热稳定性更差,开始分解温度更低。Zhang[29]通过对开始反应温度和放热量的比较,发现LixMn2O4的热稳定性最好,LixCoO2次之,LixNiO2的热稳定性最差,而且LixCoO2和LixNiO2与电解液在200~230℃之间各自发生剧烈的放热反应,随着x值减少,开始反应温度下降,反应放热量增加。而对于LixMn2O4,x值的大小对正极与电解液反应的开始反应温度和放热量几乎没有影响。Cho[36]报道采用纳米颗粒AlPO4包覆LixCoO2有效地抑制了正极材料与电解液之间的放热反应。万新华[37]研究发现,对于镍酸锂正极材料,通过包覆改性可提高其热稳定性,包覆镍酸锂的热稳定性与钴酸锂的热稳定性相当。作者[38]以锰酸锂和包覆镍酸锂的混合材料(1:1 wt)作为电池的正极,研究发现混合正极材料具有比钴酸锂更好的热稳定性。Macneil[39, 40]采用ARC和XRD方法分别对Li0.5CoO2、Li1.5MnO4充电正极与电解液之间的放热反应进行了研究。研究表明,对于Li0.5CoO2粉末在温度大于200℃时发生分解反应,析出氧气,而和EC/DEC溶剂的放热反应出现在130℃,溶剂中加入LiPF6后,反应得到抑制。对于LiMn2O4材料,在160℃发生晶型转变而放热,溶剂存在对此反应没有影响。加入LiPF6后的电解液中,随着LiPF6浓度的增加,LiMn2O4与电解液之间的反应加剧。作者认为[41],高温下LixCoO2与电解液之间的反应属

  锂离子电池电解液的安全性研究进展

  2009年08月18日 作者:项宏发 陈春华 王正洲 来源:互联网 编辑:吴峰

  于自催化反应,直接导致热失控。Jiang[42]研究发现高温下制备的LiNi0.1Co0.8Mn0.1O2正极材料与电解液的开始反应温度比LiCoO2正极材料在同样条件下的开始反应温度要高40℃,体系具有较高的热稳定性。

  3.3 电解液的热稳定性研究

  当电池温度升高时,电解液几乎参与了电池内部发生的所有反应,不仅包括电解液与负极材料、正极材料之间的相互反应,同时包括电解液自身的分解反应。电解液的分解反应温度一般大于200℃,产生的热量250J/g左右[31]。Botte[43]研究发现,随着电解液中LiPF6浓度的降低,电解液热分解反应的开始反应温度升高,反应放热量降低。在LiPF6浓度一定的情况下,随着电解液中EC浓度的降低,EMC浓度的增加,电解液热分解反应的初始温度升高,反应放热量明显下降。他们[44]又使用了修正的反应系统筛选工具研究发现,EC和EMC分别在263℃和320℃开始分解出CO2、O2、H2等。Campion[45]研究了LiPF6在不同溶剂中形成的电解液的热分解,研究发现分解产物包括CO2、C2H4、R2O、RF、OPF3、氟代磷酸酯、氟代磷酸和氧化乙烯齐聚物。作者认为各种电解液体系的分解机理都是由于痕量的质子性杂质生成的氟代磷酸酯OPF2OR催化了电解液的分解。Gnanaraj[46]使用ARC和DSC研究了1M LiPF6/EC+DMC+DEC电解液体系在40~350℃之间的热稳定性,发现220℃时DEC和DMC发生酯交换反应,240℃时EC发生开环反应,350℃时EC完全分解,有聚合物形成。凝聚相中的反应产物主要是HOCH2CH2OH、FCH2CH2-OH、FCH2CH2F和聚合物,气体产物主要是PF5、CO2、CH3F、CH3CH2F和H2O。Ravdel[47]比较研究了LiPF6在固态和二烷基碳酸酯中的热稳定性,发现LiPF6分解产生LiF和PF5,在溶液中PF5和二烷基碳酸酯反应生成一系列的产物,包括CO2、醚、氟代烷、OPF3和氟代磷酸酯。Wang[48]对LiPF6热分解的动力学行为进行了研究,根据Arrhenius定律和质量守恒定律计算出反应活化能E=104.2 kJ/mol,指前因子A=1.12×107s-1。


 

状 态: 离线

公司简介
产品目录

公司名称: 武汉天立华高电气设备有限公司
联 系 人: 天立华高
电  话: 027-86385331
传  真:
地  址: 武汉市http://www.whtlhgdq.com/东湖风景区先锋工业园天立大厦2幢
邮  编: 430083
主  页:
 
该厂商相关技术文摘:
氧化锌避雷器阻性电流提取算法探讨
根据矿物绝缘电缆的特点进行开发与应用
变电站自动化系统的实施策略
电气自动化在水电站中的应用
集控站时钟同步系统设计
方向式微机母线保护的研究
一种矩阵级联型高压变频器的研究
红外线人体测温仪电路的设计
云广±800 kV直流输电工程输电容量探讨
居民小区远程抄表系统
真空断路器的发展表现
电解液离子与炭电极双电层电容的关系
更多文摘...
立即发送询问信息在线联系该技术文摘厂商:
用户名: 密码: 免费注册为中华工控网会员
请留下您的有效联系方式,以方便我们及时与您联络

关于我们 | 联系我们 | 广告服务 | 本站动态 | 友情链接 | 法律声明 | 不良信息举报
工控网客服热线:0755-86369299
版权所有 中华工控网 Copyright©2022 Gkong.com, All Rights Reserved